	CMR INSTITUTE OF TECHNOLOGY		USN						_
Internal Assessment Test II – August -2022									
Sub:	ub: TRANSMISSION AND DISTRIBUTION Code:				18EE43				
Date:	8/08/2022	Duration:	90 Min	Max Marks:	50	Sem:	4	Section:	A & B
Note: Answer any FIVE FULL Questions. Draw a neat diagram wherever required									

V_{S} V_{R} $V_{$		
$\label{eq:Voltage regulation} \begin{array}{l} = \ \frac{V_S - V_R}{V_R} \times 100 \\ \\ \mbox{Sending end power factor, } \cos \phi_S = \frac{OE}{OC} \\ \\ \mbox{\therefore} \qquad \qquad$		
1 (b)Explain the term self GMD.The use of self-geometrical mean distance (abbreviated as self-GMD) and mutual geometrical mean distance (mutual-GMD) simplifies the inductance calculations, particularly relating to multiconductor arrangements. The symbols used for these are respectively Ds and Dm. We shall briefly discuss these terms.i)Self-GMD (Ds) : In order to have concept of self-GMD (also sometimes called Geometrical mean radius ; GMR), consider the expression for inductance per conductor per metre already derivedInductance/conductor/m $= 2 \times 10^{-7} \left(\frac{1}{4} + \log_e \frac{d}{r}\right)$ $= 2 \times 10^{-7} \times \frac{1}{4} + 2 \times 10^{-7} \log_e \frac{d}{r}$ (i)• In this expression, the term $2 \times 10^{-7} \times (1/4)$ is the inductance due to flux within the solid	CO4	L2

conductor. For many purposes, it is desirable to eliminate this term by the introduction of a concept called self-GMD or GMR.	of		
 If we replace the original solid conductor by an equivalent hollow cylinder with extremel thin walls, the current is confined to the conductor surface and internal conductor flu linkage would be almost zero. 	-		
• Consequently, inductance due to internal flux would be zero and the term $2 \times 10^{-7} \times (1/4)$ shall be eliminated. The radius of this equivalent hollow cylinder must be sufficiently smaller than the physical radius of the conductor to allow room for enough additional flue to compensate for the absence of internal flux linkage.	ly		
• It can be proved mathematically that for a solid round conductor of radius <i>r</i> , the sel GMD or GMR = $0.7788 r$.	f-		
Inductance/conductor/m = $2 \times 10^{-7} \log_e d/D_s^*$ where D_s = GMR or self-GMD = 0.7788 r			
• It may be noted that self-GMD of a conductor depends upon the size and shape of the conductor and is independent of the spacing between the conductors.	ne		
2 Derive an expression for the capacitance of a three-phase line with more than one circuit.	[10]	CO4	L3
i.e. $QA + QB + QC = 0$. Considering all the three sections of the transposed line for phase A,			
$\begin{array}{c c} A & C & B \\ \hline d_2 & d_3 & B & A & C \\ \hline d_1 & C & B & A \end{array}$			
$d_2 d_3 B \qquad A \qquad C$			
Potential of 1st position, $V_1 = \frac{1}{2\pi\epsilon_0} \left(Q_A \log_e \frac{1}{r} + Q_B \log_e \frac{1}{d_3} + Q_C \log_e \frac{1}{d_2} \right)$			
Potential of 1st position, $V_1 = \frac{1}{2\pi\epsilon_0} \left(Q_A \log_e \frac{1}{r} + Q_B \log_e \frac{1}{d_3} + Q_C \log_e \frac{1}{d_2} \right)$ Potential of 2nd position, $V_2 = \frac{1}{2\pi\epsilon_0} \left(Q_A \log_e \frac{1}{r} + Q_B \log_e \frac{1}{d_1} + Q_C \log_e \frac{1}{d_3} \right)$ Potential of 3rd position, $V_3 = \frac{1}{2\pi\epsilon_0} \left(Q_A \log_e \frac{1}{r} + Q_B \log_e \frac{1}{d_2} + Q_C \log_e \frac{1}{d_3} \right)$ Average voltage on condutor A is			
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $			

$$V_{A} = \frac{1}{6\pi_{0}} \left[Q_{A} \log_{r} \frac{1}{r^{3}} - Q_{A} \log_{r} \frac{1}{d_{A}^{4}} \right]$$

$$= \frac{Q_{A}}{6\pi_{0}} \log_{r} \frac{d_{A}^{4} d_{A}}{r^{3}}$$

$$= \frac{Q_{A}}{6\pi_{0}} \log_{r} \frac{d_{A}^{4} d_{A}}{r^{3}}$$

$$= \frac{Q_{A}}{2\pi_{0}} \log_{r} \left(\frac{d_{A}^{4} d_{A}}{r} \right)^{1/3}$$

$$= \frac{Q_{A}}{2\pi_{0}} \log_{A} \left(\frac{d_{A}^{4} d_{A}}{r} \right)^{1/3}$$

$$= \frac{Q_{A}}{2\pi_{0}} \log_{A}$$

	(a) The mutual-GMD between two conductors (assuming that spacing between conductors is large compared to the diameter of each conductor) is equal to the distance between their centres <i>i.e.</i>			
	D_m = spacing between conductors = d			
	(b) For a single circuit 3- ϕ line, the mutual-GMD is equal to the equivalent equilateral spacing <i>i.e.</i> , $(d_1 d_2 d_3)^{1/3}$.			
	$D_m = (d_1 d_2 d_3)^{1/3}$			
	(c) The principle of geometrical mean distances can be most profitably employed to $3-\phi$ double			
	circuit lines. Consider the conductor arrangement of the double circuit shown in Fig. 9-10. Suppose			
	the radius of each conductor is r.			
	Self-GMD of conductor = $0.7788 r$			
	Self-GMD of combination <i>aa'</i> is			
	$D_{s1} = (**D_{aa} \times D_{aa'} \times D_{a'a'} \times D_{a'a})^{1/4}$			
	Self-GMD of combination bb' is $-b' - b'$			
	$D_{s2} = (D_{bb} \times D_{bb'} \times D_{b'b'} \times D_{b'b'})^{1/4}$			
	$D_{s2} = (D_{bb} \times D_{bb'} \times D_{b'b'} \times D_{b'b})$ Self-GMD of combination <i>cc'</i> is			
	$D_{s3} = (D_{cc} \times D_{cc'} \times D_{c'c'} \times D_{c'c'})^{1/4}$			
	Equivalent self-GMD of one phase			
	$D_s = (D_{s1} \times D_{s2} \times D_{s3})^{1/3}$ Fig. 9.10			
	The value of D_s is the same for all the phases as each conductor has the same radius.			
	Mutual-GMD between phases A and B is			
	$D_{AB} = (D_{ab} \times D_{ab'} \times D_{a'b} \times D_{a'b'})^{1/4}$			
	Mutual-GMD between phases B and C is			
	$D_{BC} = (D_{bc} \times D_{bc'} \times D_{b'c} \times D_{b'c'})^{1/4}$			
	Mutual-GMD between phases C and A is			
	$D_{CA} = (D_{ca} \times D_{ca'} \times D_{c'a} \times D_{c'a'})^{1/4}$			
	Equivalent mutual-GMD, $D_m = (D_{AB} \times D_{BC} \times D_{CA})^{1/3}$			
	It is worthwhile to note that mutual GMD depends only upon the spacing and is substantially			
	independent of the exact size, shape and orientation of the conductor.			
	Double Circuit Three Phase:			
	: $2 * 10^{-7} log_e \frac{D_m}{D_s}$ H/m (Inductance/phase/m) ; $2 * 10^{-4} ln \frac{D_m}{D_s}$ H/km (Inductance/phase/km)			
	: $10^{-7} * 2 * log_e \frac{D_m}{D_s}$ H/m (Inductance/phase/m) ; $10^{-4} * 2 * ln \frac{D_m}{D_s}$ H/km (Indu/phase/km)			
	Where $D_s = \sqrt[3]{D_{s1}D_{s2} D_{s3}} \& D_m = \sqrt[3]{D_{AB}D_{BC} D_{CA}}$			
	$D_{s1} = \sqrt[4]{D_{aa}D_{a'a} D_{a'a'} D_{aa'}}; D_{s2} = \sqrt[4]{D_{bb}D_{b'b} D_{b'b'} D_{bb'}}; D_{s3} = \sqrt[4]{D_{cc}D_{c'c} D_{c'c'} D_{cc'}}$			
	$D_{AB} = \sqrt[4]{D_{ab}D_{a'b} D_{b'a} D_{b'a'}}; D_{BC} = \sqrt[4]{D_{bc}D_{b'c} D_{c'b} D_{c'b'}}; D_{CA} = \sqrt[4]{D_{ac}D_{a'c} D_{c'a} D_{c'a'}}$			
4(b)	Describe Composite conductors.	[3]	CO1	L4
	Composite conductors are "the composition of different metal conductors placed in a single strand	"	004	
	The composite conductors are made up of various metals similar to conductors. These variou	s	CO4	
	metal conductors are placed in a single strand. This multiple composition of conductors in a singl	e		
	strand is termed as composite conductors. In composite conductors the current divides equally for	r		
	each conductor and flows efficiently.			
	Composite conductors are used as stranded conductors for transmission and distribution system	s		
	because of their substantial advantages. Composite conductors have following advantages.			
	1. Composite conductors allow high conductivity.			
	2. The mechanical strength of composite conductors is more than solid conductors. Therefore, sag	s		
	are reduced and can be used for long distances.			
	3. The corona loss will be reduced with these conductors, and these are highly resistant for	r		
	. The corona loss will be reduced with these conductors, and these are highly resistant it	1		

	1		-
Let I_R = Receiving end load current per phase			
R = Resistance per phase			
X_{L} = Inductive reactance			
C = Capacitance per phase			
$\cos \phi_R = p.f.$ at receiving end			
V_S = Sending end voltage			
V_1 = Voltage across capacitor			
Receiving end voltage, $\overline{V}_R = V_R + j0$			
Load current, $\bar{I}_R = I_R (\cos \phi_R - j \sin \phi_R)$			
Voltage across capacitor, $\overline{V}_1 = \overline{V}_R + \overline{I}_R \left(\frac{\overline{Z}}{2}\right)$			
$= [V_R + j0] + [I_R (\cos \phi_R - j \sin \phi_R)] \left[\frac{R}{2} + j \frac{X_L}{2}\right]$			
Current through capacitor, $\overline{I}_{C} = j\omega C \overline{V}_{1} = j2\pi fC \overline{V}_{1}$			
Sending end current, $\bar{I}_S = \bar{I}_R + \bar{I}_C$			
Sending end voltage, $\overline{V}_{S} = \overline{V}_{1} + \overline{I}_{S}\left(\frac{\overline{Z}}{2}\right)$			
$= \overline{V}_1 + \overline{I}_S \left[\frac{R}{2} + j \frac{X_L}{2} \right]$			
The efficiency and regulation can be calculated in the similar manner explained in earlier sections.			
5(b) Explain the term Mutual GMD.	[3]	CO4	L2
The mutual-GMD is the geometrical mean of the distances form one conductor to the other and,		004	LZ
therefore, must be between the largest and smallest such distance. In fact, mutual-GMD simply			
represents the equivalent geometrical spacing.			
$_{6}$ The three conductors of a 3 phase line are arranged at the three corners of a triangle of sides 2m,	[10]	CO4	L3
2.5m and 4.5m.calculate the inductance per km of the line when the conductors are regularly			
transposed. The diameter of each line conductor is 1.24cm.			
Solution. Fig. 9.12 shows three conductors of a 3-phase line placed at the corners of a triangle of sides $D_{12} = 2$ m, $D_{23} = 2.5$ m and $D_{31} = 4.5$ m. The conductor radius $r = 1.24/2 = 0.62$ cm.			
Equivalent equilateral spacing, $D_{eq} = \sqrt[3]{D_{12} \times D_{23} \times D_{31}} = \sqrt[3]{2 \times 2.5 \times 4.5} = 2.82 \text{ m} = 282 \text{ cm}$			
Inductance/phase/m = $10^{-7}(0.5 + 2\log_e D_{eo}/r)$ H = $10^{-7}(0.5 + 2\log_e 282/0.62)$ H			
$= 12.74 \times 10^{-7} H$ Inductance/phase/km $= 12.74 \times 10^{-7} \times 1000 = 1.274 \times 10^{-3} H = 1.274 \text{ mH}$			
Two conductors of a single phase line, each of 1cm diameter are arranged in a vertical plane with			
one conductor mounted 1m above the other. A second identical line is mounted at the same height			
7 as the first and spaced horizontally 0.25m apart from it. The two upper and the two lower conductors	[10]	CO4	L3
are connected in parallel. Determine the inductance per km of the resulting double circuit line			

***** ALL THE BEST *****